ESDN Quarterly Report June 2010

“Research & development for sustainable development: how European R&D activities and programmes contribute to SD”

By Markus Hametner, André Martinuzzi, Michal Sedlacko, Nisida Gjoksi & Andreas Endl

This ESDN Quarterly Report (QR) focuses on the role and potential contribution of research and technological development (R&D) in relation to sustainable development (SD). The first section explores selected issues related to science, knowledge, policy making and sustainability. By doing so, it takes a look at the history of the relationships between environmentalism, science and policy making, investigates the role science plays in evidence-based decision making, and describes the characteristics of sustainability science. The second part of this QR presents some main results as regards how research funded with the EU’s seventh framework programme (FP7) contributes to the key challenges and operational objectives outlined in the EU Sustainable Development Strategy (EU SDS). It is based on the monitoring system www.fp7-4-sd.eu that has been recently set up by DG Research. The third section aims at providing an overview of how research and development (R&D) targets are being addressed in National Sustainable Development Strategies (NSDS) of EU Member States. The QR is concluded by outlining the attempts of two countries (Germany and Austria) in compiling and funding national research programmes for sustainable development.

Contents

1 SCIENCE, KNOWLEDGE, POLICY-MAKING AND SUSTAINABILITY ...2
 1.1 SCIENCE, SOCIETY AND MODERNITY ..2
 1.2 SCIENTIFIC EVIDENCE AND POLICY MAKING ..5
 1.3 SUSTAINABILITY SCIENCE ..8

2 CONTRIBUTION OF FP7-FUNDED RESEARCH TO THE EU SDS KEY CHALLENGES: GENERAL OVERVIEW & ANALYSIS BY EU SDS KEY CHALLENGE ...11
 2.1 THE EU’S SEVENTH FRAMEWORK PROGRAMME FOR RESEARCH AND TECHNOLOGICAL DEVELOPMENT (FP7) ..11
 2.2 MONITORING THE FP7 CONTRIBUTION TO SUSTAINABLE DEVELOPMENT14
 2.3 HOW DOES THE FP7 CONTRIBUTE TO THE RENEWED EU SDS? AN ANALYSIS OF THE ‘COOPERATION’ WORK PROGRAMMES 2007-2010 ...16
 2.3.1 Overview of FP7 contribution to EU SDS key challenges ..17
 2.3.2 In-depth analysis of key challenges and operational objectives19
 2.3.3 Investigating the “centres of excellence” of research for SD across Europe25
3 NATIONAL SUSTAINABLE DEVELOPMENT STRATEGIES AND RESEARCH AND
DEVELOPMENT FOR SUSTAINABLE DEVELOPMENT ..31

3.1 SIMILARITIES OF R&D MEASURES BETWEEN EU MEMBER STATES NSDS ..37
 3.1.1 Economy and Sustainable Development ..38
 3.1.2 Environment and Sustainable Development ...38
 3.1.3 Society and Sustainable Development ...38
 3.1.4 Cross-cutting issues ...39

4 OVERVIEW OF NATIONAL RESEARCH PROGRAMMES OF TWO EU MEMBER STATES39

 4.1 AUSTRIAN FRAMEWORK STRATEGY ON RESEARCH FOR SUSTAINABLE DEVELOPMENT (FORNE)40
 4.1.1 Research sub-programmes of the framework strategy for sustainable development (FORNE) 40
 4.2 GERMAN FRAMEWORK PROGRAMME “RESEARCH FOR SUSTAINABLE DEVELOPMENT”43
 4.2.1 Action fields of Research framework programme for sustainable development44

REFERENCES ...46

1 Science, knowledge, policy-making and sustainability

The aim of this introductory section is to explore selected issues related to science,
knowledge, policy making and sustainability. In the first section we will take a look at the
history of the relationships between environmentalism, science and policy making. Even
though the ecological movement has often been “in hostile relationship with science” or at
least technology (Foucault 1988a, p. 15), this relationship is far more subtle and variegated,
and of significant importance to the structure of environmental governance. In the second
section we will take a look at evidence-based decision making and at the role it formulates
for science, and some of the associated aspects (assumptions about and rationales for the
policy process, risks, tools etc.). The third section describes the characteristics of
sustainability science, as in situations of high stakes as well as uncertainties caused by
nonlinearity, complexity, and irreproducibility (Schellnhuber 2002), conflicting values, or
urgency to act, a new kind of science is needed. Our description builds on the key features of
governance for sustainable development formulated in our March 2010 ESDN Quarterly
Report and returns to the relationships between environmentalism, science and policy
making from the first section, charting several implications for the science-policy interface in
the context of sustainability governance.

1.1 Science, society and modernity

Even though the modern administrative state emerges from the European medieval state of
justice already during the 15th and 16th century (Foucault 1991, p. 102-103), the transition to
what we could call the modern approach to steering occurred only towards the end of 18th
century. Several developments were key in this respect. The “increases in agricultural
productivity and availability of resources in Europe encouraged rapid demographic growth,
and accompanied greater security from starvation and disease” (Rutherford 1999, p. 42) as
well as provided a foundation for rapid industrialisation and the rise of modern capitalism.
Secondly, the ideal of societal steering as management based upon scientific understanding
of the population and the environment became possible with the significant advances made
in science during the 18th and 19th century – in biology, geography, demography, agriculture,
social welfare and public health (hygiene, nutrition, mental health). It is at this point when "the idea of a measurable and manageable population comes into existence, but so also does the notion of the environment as the sum of the physical resources on which the population depends" (ibid., p. 39). The so-called ‘population-resources problem’ became the central theme of 19th century environmental discourse¹ (ibid., p. 52), with the task of the state involving the supervision of the ‘living interrelations’ between these two living entities (Foucault 1988b, p. 160).

Science became indispensable in this new type of steering. We already hinted that “the task of administration rested above all on ever more detailed knowledge of the resources of the state, including all the characteristics of its population and particularly knowledge of geography, demography, natural resources, agriculture, climate, etc.” (Foucault 1991, p. 93-95, in Rutherford 1999, p. 47). “Modern thinking about the environment is characterized by the belief that nature can be managed or governed through the application of the scientific principles of ecology” (Rutherford 1999, p. 37) and science provided the “ability to distribute, classify, analyse and spatially individualize the objects dealt with” (de Certeau 1984, p. 46), both in regards to the population and the environment.² “Scientific ecology has become a political resource that in important respects constitutes the objects of government and, at the same time, provide the intellectual machinery essential for the practice of such government” (ibid., p. 37). As a result, environmental knowledge became instrumentalised and subordinated to a technocratic ideal of administrative practices, becoming a vehicle for issues of “(state) ‘security’, techniques of control of the population, and new forms of knowledge (savoirs)” (Darier 1999, p. 22).³ Ecology becomes “a rationale behind a new form of political economy” (Rutherford 1999, p. 54).

For modern steering the deployment of a new type of power is critical. This power relies on developments along three axes: institutional centralization around governmental agencies; the emergence of new instrumental knowledge; and the “capillary diffusion of power effects

¹ Linking diverse strands originating in the ideas of e.g. Malthus, Darwin, Mill, Haeckel, forestry, colonial environmental management etc. (see Bramwell 1984, p. 91-100).
² The “definition and administration of populations simultaneously requires the constitution and management of the environment in which those populations exist and upon which they depend” (Rutherford 1999, p. 39).
³ State intervention (in the form of environmental legislation and enforcement agencies) intensified since the end of the 1960s, with science playing a variegated role. For example, at the international level, environmental problems and policies have been identified and framed with a strong involvement of scientists (see the work on epistemic communities by Haas (1992; 2004)). Another example made Cramer et al. (1989, p. 96-97) shows how environmental concerns have even been partially formulated to reflect the professional interests of scientists. Here the observations of Birkland that “the group that successfully describes a problem will also be the one that defines the solutions to it” (2007) and of Schattschneider that “the definition of alternatives is the choice of conflicts, and the choice of conflicts allocates power” (1968, p. 68) are relevant. Scientists and their organisations thus become important actors in policy processes, initiating or shaping policy responses. In addition to that, science plays a role of epistemic policing, defining what is to count as scientifically acceptable knowledge of the natural world. In particular environmental governance in advanced liberal societies “is [thus] far more dependent on the role played by scientific expertise in defining and managing environmental problems than the more traditional state-centric notions of politics and power would suggest” (Rutherford 1999, p. 37) and “widespread reliance by the state on extensive systems of scientific advisory structures [has] become an integral feature of environmental (and health) policy making in industrialized societies” (ibid., p. 55). It is worthy of note that this reliance has also a complex influence on public administration; e.g. different policy tools chosen in policy design (i.e. the definition of alternatives) “require distinctive sets of management skills and knowledge, thus the choice of tools ultimately influences the nature of public management” (Sidney 2007, p. 83).
across the entire social body” (Darier 1999, p. 23), i.e. becoming increasingly pervasive in its ‘acting directly on the body of the individuals’ (in areas of e.g. lifestyles and consumption patterns, hygiene or health). It would be too hasty to perceive this power in purely negative, coercive or repressive terms. In addition to its disciplining and cohesion-ensuring function executed through ‘continuous regulatory and corrective mechanisms’, power also has a constitutive and enabling function, embodied in the discourse, legislation and organisation on public right (Foucault 1976, p. 144; see also Lanthier & Olivier 1999, p. 70). Knowledge through power to ‘quantify, measure, appraise and hierarchise’ is pivotal for both of these functions; steering thus becomes reliant on ‘a series of expert knowledges’ (Rutherford 1999, p. 41). Since modern liberal democracies rest on the marriage between “more or less formalized bodies of knowledge and specific administrative mechanisms” (ibid., 50), science – as a “historically specific, coherent configuration of how knowledge is organized” (Darier 1999, p. 9) – becomes, since the end of 19th century, inextricably linked to the exercise of power.

Although the described phenomena can be seen as continuing until today, since the end of the 1950s we also observe another qualitative change in the status and role of knowledge in post-industrial, decentralised and globalised societies, where fundamental transformation of the capitalist mode of production and of labour have occurred. It is increasingly perceived that the scientific agenda (tied to the global processes of modernisation and rationalisation) may itself contributed to fuelling processes of ecological destruction and poverty and inequality, expressed in the concern that scientists are the problem, not the solution (Dasgupta 2000), and that solutions to prior problems later become new, and more difficult, problems (e.g. nuclear power, microbiology). This is also related to the risk society of Ulrich Beck and the increasing acknowledgement of complexity and uncertainty: “while our knowledge continues to increase exponentially, our relevant ignorance does so even more rapidly” —“this is ignorance generated by science” (Ravetz 1987, p. 100, in Darier 1999, p. 2). The absence of obvious credible solutions and the knowledge to implement them sustain concerns and anxiety for the environment”, resulting in “proliferation of discourses about the environment from most quarters of the society” while at the same time resulting in a “general increase in scepticism about scientific knowledge” (Darier 1999, p. 2) and diminishing of trust into the institutions of science even despite (or due to) their role as a driver of technological innovation. Darier adds that “at least since Thomas Kuhn (1962), there has generally been less confidence that scientific knowledge and technological innovations are the necessary conditions for human betterment” (ibid.). Lyotard suggests that recent forms of knowledge (in natural and social sciences, in politics) cannot anymore make explicit appeals to universal standards, and particularly the progress in sciences produces an

4 Gordon also interestingly observes that the policing state is simultaneously also the ‘state of prosperity’ (1991, p. 10).

5 Devall and Sessions show how the management ideal based on a problem-solving rationale relates to creation of this ‘series of expert knowledges’ in the following quote (1985, p. 146): “[I]ncreasingly intensive management produces a host of unintended consequences which are perceived by the managers and the public, and specially by the environmental/ecology movement, as real and severe problems. The usual approach, however, is to seek more intensive management, which spawns even more problems. And each of these problems is seen as separate, with separate experts and interest groups speaking to each other across a chasm of different technical vocabularies.”

6 Lyotard describes how decision makers “allocate our lives for the growth of power”; “[i]n matters of social justice and of scientific truth alike, the legitimation of that power is based on its optimizing the system’s performance – efficiency” (1984).
‘incredulity toward grand narratives’ (Lyotard 1984, p. xxiv). Some scholars go as far as to say that in societies “characterised by an increasing intensity and speed of reflexive mechanisms (...) the result of [reflexive] processes might establish new relationships that undermine the existing knowledge” and as a result, “[s]ocial reality has then become unpredictable in principle” (in’t Veld 2010, p. 2). “As knowledge production grows, society learns to respond more quickly with a potential negation of that knowledge as a consequence” – “[s]ociety can undo knowledge about itself” (Basten 2010, p. 75). Postmodern society is therefore characterised by ‘radical heterogeneity’ and “decline of ideological hegemony in politics and social life” (Dickens & Fontana 1994, p. 4), even, as Bell argues, “the dissolution of shared moral order” (ibid., p. 9).

Eroding trust in scientific knowledge gives more space to other types of knowledge. “Internet, better education and other societal changes have made knowledge accessible to many more people than in the past”, leading to ‘citizens’ knowledge’ (in’t Veld 2010, p.5; see also Lyotard 1984). This would correspond with the developments toward governance described by Turnhout as “a trend away from hierarchical command and control modes of steering towards civil society participation and the use of voluntary and market-based instruments”, creating spaces where “[p]articipants engage in Habermas-inspired deliberations and achieve communicative rationality”, and transforming organisation of societies away from hierarchies toward “horizontal networks of connected, free and equal actors” (2010, p. 31). In the science-media-politics triangle changes in each of the peaks have been observed – from disciplinary science :: top-down media :: representative democracy to emerging transdisciplinary design/science :: emerging bottom-up media :: emerging participatory democracy (in’t Veld 2010). It is obvious that this development requires an adequate incorporation of the different types of knowledge produced by different actors and in different processes than in science.

1.2 Scientific evidence and policy making

Evidence-based decision making (also called fact-based decision making or evidence-based policy making) is a concept which relatively recently became popular in public (particularly in the field of public health) and private decision making. It refers to use of evidence (produced by science, but also by professional evaluation and other tools, see below) in decision making – either to make, inform or support a decision (see e.g. Tingling & Brydon 2010). Evidence-based decision making attempts to link knowledge and policy (in other words, providing evidence is a way of transforming knowledge into policy making) to make policies more effective, manage risks (see e.g. the discussion on the precautionary principle), achieve transparency, strengthen accountability and support learning. Nevertheless, its underlying understanding of transparency, legitimacy and efficiency/effectiveness is, as in the case of

7 It has also been suggested that these patterns typical for Western science/policy interface and the role of mainstream scientific knowledge (especially at the national level) might not be that relevant to other levels of social organisation, where small-scale traditional societies „base their decisions on traditional ecological knowledge (...) and analogous modes of thinking applicable to other issue areas” (Young 2006:849-850). The importance of local knowledge or contextual knowledge in contrast to the scientific knowledge as a particular form of knowledge has also been stressed by e.g. Ostrom (1990) or Fischer (2000). Above we have also already shown the importance of ‘epistemic policing’ and definition of permissible knowledge, which is conducted by the same institution as the institution producing knowledge (i.e. science). In this vein Young further states that “the task of developing a consensus regarding the state of knowledge pertaining to global concerns such as climate change or the loss of biological diversity is not an easy one” (2006).
results-based management, inspired by ‘neo-liberal or managerial governance ideals’ (Turnhout 2010, p. 35), based on an implicit top-down perspective and an idealised rational problem-solving and instrumental approach to policy making. As such, it can be understood as a particular expression of the modernist approach to steering and the relationship between knowledge and steering, as explored in the first section of this introduction.

The managerial ideal assumes an information deficit and that more information will lead to better decision-making. The model of ‘speaking truth to power’ (Wildavsky 1979) “is a linear model that assumes one-way traffic of truth from science to policy and separate domains of production and use of knowledge” (Turnhout 2010, p. 26). Knowledge as an input into the decision-making process is considered to be value-free and objective (which should be ensured by the attendant structure of science), demand-oriented and to serve, in its ideal form, as a true image of the world with all its causal relationships which are relevant for decision making. “Effectiveness [of policy interventions] is assured as the knowledge concerns true statements on the relationships between political interventions and their societal effects” and “legitimacy is furthered when the policies are based upon the ‘objective’ truth” (in’t Veld 2010, p. 6). We have already shown how such expectations are unrealistic.

These ideals are particularly visible when evidence is supposed to be used to make a decision, i.e. evidence and the (scientific) processes creating it represent the only meaningful input into decision making. Such an arrangement creates knowledge elites and is typically termed as technocratic (meaning that policy decisions depend on superior knowledge provided by experts). Policy formulation has for a long time had a back-room function in arenas which were not visible or open to the public, such as government bureaucracies, interest group offices or think tanks (Sidney 2007); however, “national policy ... increasingly finds policy formulation to occur outside of government offices – that is, in think tanks and within the loose networks of advocacy and interest groups that together with government officials make up policy communities” (ibid., p. 86).

When we say that evidence is informing a decision we on the other hand means that scientific knowledge/evidence is one of several inputs into decision making (the other types

8 Evidence-based decision making is related to result-based management (RBM, also called performance management) which in the context of public policy means demonstrating achieved value for spent public money. RBM is considered to be one of the features of New Public Management, one of the three major eras of governance, promoted as ‘rationalisation’ and ‘de-ideologisation’ of government, where in fact it represented a colonisation of government practice by economic categories (efficiency, ‘doing more with less’, customer orientation, benchmarking and performance monitoring, etc.). RBM is closely linked to evaluation and life-cycle approach to policy planning; it is, nonetheless, relying on professional consultancy rather than institutionalised science, and although methods of particularly social science research get frequently utilised, they often do not live up to standards of scientific quality (cf. OECD 2001). RBM was increasingly utilised among the OECD countries in the 1990s and later promoted within the UN system especially in relation to evaluation of programs of development assistance.

9 The guiding metaphor for policy as problem solving is the policy cycle, based upon the regulatory cycle from engineering (Crabbé & Leroy, p. 26; see also Sabatier & Mazmanian 1979).

10 In the ESDN Quarterly Report from March 2010 we suggested that “when dealing with societal transitions of such a large scale and scope as the sustainable development project implies, policy making by necessity meets ‘wicked problems’”, which manifest inter alia the feature of ambiguity; “[t]he problem with ambiguity is not that the real world is imperfectly understood and that more information will remedy that” (Weick 1995). The very nature of deeply complex problems implies that more knowledge (produced and used within existing structures) does not necessarily translate into higher quality of decision making.

11 There is also a debate about whether such a strong decision-support impinges on the political mandate of the decision makers.
of input being e.g. participatory processes and local knowledge, negotiation/bargaining or values/ideologies; see also JRC & AAAS 2009, p. 6, and Lindblom & Cohen 1979, p. 10-29). It needs to be, however, pointed out that seeing science as monolithic in this respect would be an oversimplification: “[p]olicy makers have multiple sources of solicited and unsolicited science advice, thus science does not necessarily speak with one voice” (JRC & AAAS 2009, p. 7). Various scientists can be involved in various policy communities and knowledge coalitions with differing vested interests. In addition, the same piece of evidence can be used (framed, interpreted) to support differing interests, which often happens in contested issues such as climate change, smoking and lung cancer, chemicals, GMOs etc.

The most perilous type of evidence usage is to support (justify) an already made decision. Scientific (or other) evidence is produced after the decision is made to retroactively increase accountability for the decision, silence critics or shift responsibility. Among the obvious dangers are selective commissioning and publishing of research (see e.g. UK House of Commons 2006, p. 49-50) as well as politicisation of science: the “power and influence of politics tends to infect the procedures and processes of knowledge production of science, to its detriment, and [...] to the detriment of the public interest” (UK House of Commons 2006, p. 46-47; see also Dasgupta 2000).

Evidence-based decision making goes hand in hand with developments in tracking of the performance of the public sector. Numerous tools in support of evidence-based decision making exist: assessment tools, measurement and indicator systems, scenarios, appraisal, results-based budgeting, evaluation and reporting tools etc. European Commission’s Impact Assessment procedures as well as various other forms of impacts assessment (Regulatory Impact Assessment (RIA), health impact assessment, social impact assessment, environmental impact assessment (EIA), strategic environmental assessment (SEA), sustainability impact assessment) are of rising prominence.

As stated above, scientific advice typically has a strong role in evidence-based decision making. In the UK, the House of Commons recommended that science and evidence be put “at the heart of policy making” (2006, p. 10) and that scientific expertise should “be used to the maximum level possible” (ibid., p. 11), including in processes of risk assessment. This would require “greater public investment in research to underpin policy making and ... [funding of] independent policy-related research” (ibid., p. 3). Independence from political interests is one of the structural features of the institution of science different from policy, expected to counterbalance some of the more interest-driven features of policy making – similarly, science has a role to “combat the short-term nature of the political cycle” (p. 3). Critics, however, point out that such a role for science is not entirely feasible: i) “scientific knowledge by its very structure never directly relates to action, because it is fragmented, partial, conditional and immunised” (in’t Veld 2010, p. 10); and ii) there is “an incompatibility between the ideology of evidence-based policy and the natural inclination of the political process to want to secure the best outcomes” (UK House of Commons 2006, p. 45). This is supported by the findings of the survey conducted by DG Research, Social Sciences and Humanities, which conclude that scientists see the impact of (EU-funded) research on policy making as too low (EC 2001, see also Turnhout 2010, p. 25). Contrary to conventional wisdom, policy makers are not influenced by single studies or reports and elements of the policy process not related to problem-solving tend to be systematically ignored (Jann & Wegrich 2007), perhaps because “[p]otential knowledge users can have well-grounded and justified reasons to reject scientific knowledge”, including reasons stemming from “a justified lack of trust in the knowledge-producing institutions” (Turnhout 2010, p. 26; see also above).
It is increasingly being acknowledged that science is a “cultural, social activity permeated with values and preferences” and as such “not essentially different from other cultural practices – including policy – [having] no privileged, unmediated access to the truth” (ibid.).

1.3 Sustainability science

As argued above, “science is in need of a new legitimacy and requires a new appealing vision for the relationship between knowledge production and use” (Turnhout 2010, p. 26). We suggest that sustainability science is well suited to serve in this respect. Sustainability science is an emerging field of scientific study, however not yet fully established and autonomous. It is, however, already “bringing together scholarship and practice, global and local perspectives from north and south, and disciplines across the natural and social sciences, engineering, and medicine” (Clark & Dickson 2003) “to produce understanding that is true for specific places” (Clark et al. 2005, p. 17). Sustainability science is supposed to achieve comprehensive understanding of complex problems and help policy address them. Komiyama and Takeuchi, editors of the recently launched academic journal *Sustainability Science*, write in the first issue: “[i]t is our belief that this research can help resolve one of the fundamental dilemmas of contemporary scholarship – the inability of our overly specialized disciplines to offer comprehensive solutions to the conditions that threaten the sustainability of global, social, and human systems” (2006, p. 5). In the following, we will describe key features of the emerging field of sustainability science.

Sustainability science is supposed to be socially oriented (engaged) and demand-driven instead of purely academic, and trans- and interdisciplinary instead of mono- or multidisciplinary12 (Funtowicz & Ravetz n.d.; Martens 2006). This is confirmed by Blackstock et al., who describe sustainability science as “embedded within broader social processes of understanding and applying sustainability, thus sustainability science contributes to socio-political decision making processes through information provision (especially analyses of risks and consequences) derived from emergent interdisciplinary inquiry” (2007). Interdisciplinarity, however, is a challenge to the established disciplinary boundaries of science, which on one hand isolate individual disciplines and make transfer of approaches and solutions problematic, but on the other hand provides an attendant structure for academic careers (journals and their impact factors, academic chairs etc.). Seager confirms that “[t]he overwhelmingly dominant approach [in science] has been reductionist, which requires isolation of system components for independent investigation” (2008, p. 446). Rather than examining each system independently, sustainability science focuses on the interactions between human and natural systems, examples of emerging areas being ecological economics, industrial ecology, ecosystem health, political and social ecology, system dynamics, sustainability governance, sustainability evaluation research, and sustainable decision making, management, policy and design (ibid., p. 447-449). Another feature of sustainability science which makes it difficult to fit within existing disciplinary

12 **Monodisciplinarity** refers to the pursuit of knowledge and study of a subject using theories, methods and approaches from one scientific discipline; **multidisciplinarity** refers to a study of the subject which attempts to provide more insight through presenting side-by-side results of examination by two or more disciplines; **interdisciplinarity** refers to integration through transfer of theories, methods or approaches between two or more disciplines, producing findings which would not be autonomously reachable by individual disciplines; **transdisciplinarity** refers to creating wholly new frameworks out of the building stones provided by individual disciplines.
structures is that it represents “neither ‘basic’ nor ‘applied’ research”, but rather “use-inspired basic research” (Clark 2007, p. 1737).

As suggested above, in addition to the challenges of inter- and transdisciplinarity, sustainability science should strive to be participatory (i.e., achieving co-production of knowledge) instead of technocratic; increasingly used is also the term civic science (Bäckstrand 2003) or democratic science. Sustainability science tries to enlarge the role of the citizens in various steps of the production and usage of scientific knowledge with the goals of restoring public trust in science, re-orienting science towards coping with the complexity of sustainability problems and installing democratic governance of science (ibid.; see also Blackstock et al. 2007). The participants of the Friibergh Workshop on Sustainability Science which took place 11-14 October 2000 similarly stated that sustainability science needs “to be able to involve scientists, practitioners, and citizens in setting priorities, creating new knowledge, evaluating its possible consequences, and testing it in action”. Clark et al. even suggest that stakeholder dialogue is “the prime mode of holistic knowledge production” (2005, p. 11; see also O’Riordan et al. 1999). However, “power is usually lacking in discussions about governance and participation” (Turnhout 2010, p. 31). Returning to topic of power and knowledge from the first section, we find the following quote by Turnhout relevant (ibid., p. 32): “[T]he public is not a pre-existing entity waiting to be involved; it is brought into being – performed – in the context of participation. Participatory initiatives are sites of power in the sense that they create their own participants in ways that fit with the objectives and expectations of the initiators. (...) There is little room for deviation. Actors who do not fit the requirements or expectations, who lack the skills and competences to use information or participate in knowledge production, or who wish to refrain from involvement will become effectively marginalised.”

Sustainability science is also based on acknowledging complexity and uncertainty and as such fulfilling an exploratory and learning-oriented role (Funtowicz & Ravetz n.d.; Martens 2006). Clark et al. suggest that “a final insight to emerge from the last decade’s reconsideration of the role of science in achieving sustainability is a shift of emphasis from the importance of ‘knowing’ to the centrality of ‘learning’” (2005, p. 17). Martens suggests that among the central elements of sustainability science there are also ‘learning through doing and doing through learning’ as well as ‘system innovation instead system optimization’ (2006, p. 38). Similarly the participants of the Friibergh Workshop on Sustainability Science suggest that “[t]he common sequential analytical phases of scientific inquiry such as conceptualizing the problem, collecting data, developing theories and applying the results will become parallel functions of social learning, which incorporate the elements of action, adaptive management and policy as experiment” (2000).

Pim Martens also suggests that sustainability science in effect requires a new paradigm “that is better able to reflect the complexity and the multidimensional character of sustainable development” and which “must be able to encompass different magnitudes of scales (of time, space, and function), multiple balances (dynamics), multiple actors (interests) and multiple failures (systemic faults)”, with the theory of complex systems being suggested as the “umbrella mechanism to bring together the various parts of the sustainability puzzle” (2006, p. 38).
Since sustainability science is still in flux, it is too early to foresee the scope of its core questions, mechanisms and criteria for quality control, as well as institutional structures (Clark & Dickson 2003). The participants of the Friibergh Workshop on Sustainability Science foresaw that “sustainability science will ... require new styles of institutional organization to foster and support inter-disciplinary research over the long term; to build capacity for such research, especially in developing countries; and to integrate such research in coherent systems of research planning, assessment and decision support” (2000). It is also yet unclear whether sustainability science will be one ‘metadiscipline’, or several sciences of sustainability (for examples of areas see above).

Science of sustainability can contribute to the societal task of transition to sustainability through: i) producing knowledge on the interactions between socioeconomic and natural systems: stocks, flows, performance; ii) producing knowledge on the management of the transition: actors, incentives and institutions; iii) becoming part of the transition process: boundary spanning between science and policy, achieving mobilisation, participation, empowerment and capacity building (see also Komiyama & Takeuchi 2006, p. 5); iv) self-reflection: identification and utilisation of the means of improvement to fulfil the first three roles (infrastructure, institutions for integrative research, skills to conduct participatory research, networking etc.). These four roles are depicted in Figure 1 below.

Figure 1: The four roles of science of sustainability

Sustainability science should represent a possibility of achieving a new consensus on “what knowledge is, what it means to use it effectively and how it should be transformed into action” (Turnhout 2010, p. 32) and thereby contribute to ‘knowledge democracy’; however, we need to be continuously aware that “knowledge generation is inextricably embedded in the cultural-historical context” (Clark et al. 2005) and that “environmentalism is itself a normalizing discourse, and thus produces specific power relations, rather than eliminates them” (Sandilands 1999, p. 80).
2 Contribution of FP7-funded research to the EU SDS key challenges: general overview & analysis by EU SDS key challenge

This section provides a brief analysis of how the EU’s main research programme, the Seventh Framework Programme for Research and Technological Development (FP7), contributes to the key challenges and objectives laid down in the European Union Sustainable Development Strategy (EU SDS) from 2006 (for a detailed overview of the EU SDS and its objectives and targets, see the ESDN Quarterly Report May 2006). First, the FP7 and its main thematic areas will be introduced. Then, the methodology behind the monitoring system FP7-4-SD.EU that has been developed on behalf of DG Research will be outlined. Finally, the results of the analysis of the FP7 Work Programmes covering the period 2007-2010 will be presented.

2.1 The EU’s Seventh Framework Programme for Research and Technological Development (FP7)

Since 1984, the so-called “Framework Programmes” have been the main instrument for funding research in the European Union. The 7th Framework Programme (FP7) is the current framework programme, running for seven years from 2007 to 2013 with a total budget of over € 50 billion. Compared to previous framework programmes, FP7 is the most comprehensive one both in terms of lifespan and funding. Compared to its predecessor, the FP6 which ran from 2002 to 2006, the FP7 budget represents a 63 % increase (at 2007 prices).

The FP7 is in general aimed at contributing to both the Lisbon Strategy (and its successor, the “Europe 2020” strategy) and the EU SDS, the two main EU policy strategies. The FP7’s general main objectives were outlined in the Commission’s impact assessment and ex-ante evaluation of FP7 (European Commission 2005), i.e. to contribute to meeting the EU’s policy objective to become the most competitive and dynamic knowledge society in the world and to invest 3 % of the EU’s GDP in R&D by 2010 (“Barcelona goal”). More detailed objectives that were also outlined include:

- To enhance the competitiveness of European industry by the common technology initiatives;
- To increase European S&T collaboration and networking for sharing R&D risks and costs;
- To improve the coordination of European, national and regional research policies;
- To strengthen the scientific excellence of basic research in Europe through increasing coordination and competition at the European level;
- To promote the development of European research careers and to make Europe more attractive to the best researchers;
- To provide the knowledge-base needed to support key Community policies;
- To increase availability, coordination and access in relation to top-level European scientific and technological infrastructure.

The FP7 budget will for the most part be spent on so-called ‘indirect actions’, that is, grants to research actors from across Europe (and beyond), with the aim of co-financing research, technological development and demonstration projects. These grants are provided on the basis of highly competitive calls for proposals (published in annual Work Programmes)
combined with subsequent peer review processes which also include an ethical review. The remainder of the FP7 budget is spent on so-called ‘direct actions’ referring to the (non-nuclear) activities implemented by the Joint Research Centre (JRC), a research based policy support organisation which – as integral part of the European Commission – provides scientific advice and technical know-how to support a wide range of EU policies.

‘Indirect actions’ are grouped into four so-called “specific programmes” and constitute the bulk of the available FP7 budget. The specific programme (SP) ‘Cooperation’ is at the core of FP7 and represents about two thirds of the overall budget, followed by the SP’s ‘Ideas’, ‘People’ and ‘Capacities’. The four specific programmes will be presented in more detail below.

[Figure 2: FP7 budget distribution (source: European Commission, 2007a)]

Complementing the activities of the FP7, although legally separated from it, the European Atomic Energy Community (Euratom) has its own multiannual framework programme for nuclear research and training activities (Euratom FP7), running from 2007 to 2011 with a budget of € 2.7 billion. Similar to the FP7, the Euratom FP7 includes ‘indirect actions’ based on calls for proposals and ‘direct actions’ referring to the (nuclear) activities of the JRC.

Overall, the following “specific programmes” (SP) constitute the five major building blocks of FP7 (including Euratom FP7). The SP’s correspond to the main areas of EU research policy and work together to promote and encourage the creation of European poles of (scientific) excellence:

- **Cooperation**
 The SP Cooperation is at the core of FP7, representing two thirds of the overall budget. It fosters collaborative research across Europe and other partner countries through projects by transnational consortia of industry and academia. Research is carried out in ten key thematic areas “corresponding to major fields of knowledge and technology, where the highest quality research must be supported and strengthened to address European social, economic, environmental and industrial challenges” (European Parliament and European Council, 2006). The overarching aim of the
The Cooperation programme is to contribute to sustainable development, by funding research in the following themes:

- Health
- Food, agriculture and fisheries, and biotechnology
- Information and communication technologies
- Nanosciences, nanotechnologies, materials and new production technologies
- Energy
- Environment (including climate change)
- Transport (including aeronautics)
- Socio-economic sciences and the humanities
- Space
- Security

Ideas
The programme Ideas supports “frontier research” solely on the basis of scientific excellence. Research may be carried out in any area of science or technology, including engineering, socio-economic sciences and the humanities. In contrast with the Cooperation programme, there is no obligation for cross-border partnerships. Projects are implemented by “individual teams” around a “principal investigator”. The programme is implemented via the new European Research Council (ERC).

People
SP People provides support for researcher mobility and career development, both for researchers inside the European Union and internationally. It provides fellowships and other measures to help researchers build their skills and competences throughout their careers.

Capacities
The Capacities programme strengthens the research capacities that Europe needs if it is to become a thriving knowledge-based economy. It covers the following activities:

- Research infrastructures
- Research for the benefit of SMEs
- Regions of Knowledge
- Research Potential
- Science in Society
- Specific activities of international cooperation

Nuclear research
The programme for nuclear research and training activities covers the following themes:

- Fusion energy research (mainly with regard to the realization of ITER)
- Nuclear fission and radiation protection

As FP7 is designed to complement national research programmes, activities funded within FP7 are subject to meeting certain criteria in order to show a “European added value”. One of these key criteria is transnationality: research projects need to be carried out by consortia
which include participants from different European (and other) countries; fellowships in FP7 require mobility over national borders. By promoting transnational research, FP7 seeks to counter the fragmented nature of the European research landscape (European Commission, 2007a).

In principle, FP7 is open to participation from any country in the world. However, participation procedures and funding opportunities vary for different groups of countries. EU Member States and countries associated with FP7 (i.e. countries paying a share to the overall budget of FP7)\(^{13}\) enjoy the broadest rights and access to funding. The so-called “International Cooperation Partner Countries” (ICPC) (e.g. Russia and other Eastern European and Central Asian states, developing countries, Mediterranean partner countries, etc.) constitute another important group of countries entitled to participate in FP7. Cooperation with these so-called “third countries” is explicitly encouraged in FP7, with the aims of:

- “to support European competitiveness in selected fields through strategic partnerships with third countries, and initiatives that encourage the best third-country scientists to work in and with Europe;
- to address specific problems that either have a global character or are commonly faced by third countries, on the basis of mutual interest and mutual benefit.” (European Commission, 2007a)

Participation in FP7 is open to a wide range of organisations and individuals from the above mentioned countries, including:

- research groups at universities or research institutes
- companies intending to innovate
- small or medium-sized enterprises (SMEs)
- SME associations or groupings
- public or governmental administration (local, regional or national)
- early-stage researchers (postgraduate students)
- experienced researchers
- institutions running research infrastructures of transnational interest
- organisations and researchers from third countries
- international organisations
- civil society organisations (European Commission, 2007a).

2.2 Monitoring the FP7 contribution to sustainable development

In order to assess how research funded within FP7- in particular from the Specific Programme ‘Cooperation’, given its overall aim of “contributing to sustainable development” – contributes to the key challenges and objectives of the EU SDS, a monitoring system was set up by the Vienna University of Economics and Business (WU Vienna) in cooperation with Delft University of Technology (TU Delft) and maystorm software GmbH on behalf of DG Research. Since April 2010, the results of the monitoring of all Work Programmes published

\(^{13}\) The following countries are associated to FP7 via so-called “third country agreements”: the EU candidate countries (Croatia, the Former Yugoslav Republic of Macedonia, Turkey), the EFTA countries (Iceland, Liechtenstein, Norway, Switzerland), as well as Albania, Bosnia & Herzegovina, Montenegro, Serbia, the Faroe Islands and Israel (European Commission 2010a)
so far under FP7 (i.e. the Work Programmes 2007-2010) are available to the public via the public platform www.fp7-4-sd.eu.

The monitoring system consists of two main elements: (i) scientific evidence-based screening, and (ii) a public platform allowing users to interactively analyse the results from various points of view. These two main parts and the methodology behind them will be described in detail below.

Scientific evidence-based screening

The monitoring system combines two main features of European policy: The FP7 on the one hand, with its themes and activities (mainly from the ‘Cooperation’ programme), and the key challenges and objectives of the EU SDS on the other. In order to make this combination operational, a **qualitative text analysis of the topic descriptions** (a ‘topic’ is the most precise point of the hierarchy applied within FP7, outlining the needs, aims and expected impacts of the research to be undertaken concerning a specific issue) that are published in the annual FP7 Work Programmes has been undertaken. The key challenges and operational objectives specified in the renewed EU SDS of 2006 have in this regard been used as a **referential framework**.\(^\text{14}\)

The initial screening was conducted by experts from WU Vienna and TU Delft, with the aim of identifying positive (i.e. supporting the EU SDS objectives), negative (i.e. conflicting with EU SDS objectives) or undetermined (i.e. impacts which due to a lack of scientific evidence cannot yet be categorized as positive or negative) expected impacts. In order to ensure the quality and accuracy of the identified impacts, some 10% of the topics (including those having negative or undetermined impacts) were additionally validated by thematic experts from Ecologic Institute, INFRAS Research & Consulting, and ISI Fraunhofer.

When interpreting the results of the monitoring system, it is important to keep in mind that the results are based on **ex-ante evaluations of expected impacts** specified in the topic descriptions, and must not be understood as **ex-post** impact assessments of projects that are or have actually been carried out under a particular topic. However, as FP7 comprises a peer review process which ensures that the projects selected for funding actually meet the expected impacts outlined in the topic descriptions, the results provided by the monitoring system can nevertheless be seen as a “proxy” of actual impacts.

For a **more detailed description of the methodology behind the scientific evidence-based screening**, please consult the monitoring system's website www.fp7-4-sd.eu.

Interactive database at www.fp7-4-sd.eu

In order to make the results of the monitoring system available to the public, to allow customized analyses according to the interests of individual users, and to stimulate a public debate on particular issues, a public platform has been set up at www.fp7-4-sd.eu that – as

\(^\text{14}\) In addition to the seven EU SDS Key Challenges, an additional (eighth) category was introduced (“additional SD objectives”) containing a number of objectives that are not included in the EU SDS, but are stated in national SD strategies (NSDS), such as ‘sustainable regional development’, ‘sustainable tourism’, ‘SD governance’ or ‘public security & protection’. By including these additional objectives, the monitoring system allows to not only monitor the contribution of FP7 to the EU SDS, but also to the most common objectives stated in national SD strategies.
one of its main features – includes an interactive database which allows analysing the data of the monitoring system from various points of view. To this end, it offers three so-called “Views” producing graphs, maps and tables which can be manipulated by applying several filter options in order to focus the analysis on particular FP7 themes, Work Programmes and EU SDS objectives. The analyses presented in the subsequent section of this quarterly report have been produced by combining the available “Views” and filter options.

In addition to the topics included in the FP7 Work Programmes, information of projects which are or have actually been carried out within FP7 has been integrated into the interactive database in order to allow even more sophisticated analyses, such as analysing the amount of funding (“EC contribution”) dedicated to research on “climate change”, “low carbon economy”, “SD governance”, etc., only to name a few. Moreover, the analyses can be broken down to the national and regional levels, allowing for a comparison across EU Member States or between regions within a particular country.

The monitoring system currently (as of July 2010) comprises information on about 2,000 topics (from the ‘Cooperation’ Work Programmes 2007 to 2010) and 2,500 projects (from the years 2007 to 2009) with more than 27,000 project partners and a total EC contribution of more than € 8,500 million.

In order to stimulate a public debate, the database allows ‘zooming’ into the detailed screening results, i.e. the impacts a topic is expected to have on the key challenges and operational objectives of the EU SDS (see above), and additionally enables users to provide feedback.

For a more detailed description of the monitoring system’s interactive database, please consult the guideline at www.fp7-4-sd.eu.

2.3 How does the FP7 contribute to the renewed EU SDS? An analysis of the ‘Cooperation’ Work Programmes 2007-2010

This section summarises some main results of how FP7-funded research contributes to the key challenges and objectives laid down in the renewed EU SDS. It focuses on the ten themes of the Specific Programme ‘Cooperation’ (see above) and comprises analyses created by using the “Views” and filter options available at www.fp7-4-sd.eu. First, the overall contribution to the seven EU SDS key challenges in terms of on both number of projects and the amount of funding provided by FP7 will be illustrated. Then, the key challenges will be presented in more detail, by focusing on how individual operational objectives (such as ‘reducing greenhouse gas emissions’, ‘halting the loss of biodiversity’, ‘improving mental health’ or ‘promoting increased employment of young people’) are addressed by FP7 projects.

Please note that the results presented in this section refer to data extracted in June 2010. Due to regular updates of the monitoring system, e.g. in case new projects from recent Work Programmes are added to the database, the figures presented on www.fp7-4-sd.eu may already refer to a more recent dataset and can therefore differ from those presented here.
2.3.1 Overview of FP7 contribution to EU SDS key challenges

Overall, about 75% of the projects that have been funded within FP7 so far (from the Work Programmes 2007 to 2009) contribute to one or more of the EU SDS key challenges (projects from the most recent Work Programme 2010 are not yet included as they are still under negotiation). The number varies between 74% and 77%, respectively, depending on whether the analysis is based on (a) the number of projects or (b) the amount of funding provided by FP7 (“total EC contribution”).

On the level of EU SDS key challenges, Figure 3 shows that the key challenges “public health”, “climate change and clean energy” and “conservation and management of natural resources” are addressed most prominently by FP7 projects, with “public health” on top, having more than 650 projects contributing to strategy’s objectives related to health issues. The key challenges “climate change and clean energy” and “conservation and management of natural resources” are addressed by about 480 and 400 projects, respectively. On the other end of the scale, the key challenges “social inclusion, demography and migration” and “global poverty and sustainable development challenges” are only addressed by some 150 projects each.

Figure 3: number of projects contributing to the EU SDS key challenges

Figure 3 also shows an eighth category called “Additional SD objectives”; this “key challenge” has been added in order to cover objectives included in national SD strategies (NSDSs) which

15 Since each project may have impacts on more than one operational objective and/or key challenge, the sub-totals (number of projects and amount of funding per key challenge) should not be added up as this would result in potentially overestimated figures!
are not considered in the EU SDS, such as 'sustainable regional development', 'sustainable tourism', 'SD governance' or 'public security & protection'. Notably, these additional objectives are addressed by some 400 projects, indicating a relatively high relevance for European SD research.

When interpreting the figures presented above, it has to be kept in mind that the number of impacts on the different EU SDS key challenges is partly predetermined by the structure of the FP7 ‘Cooperation’ programme. The FP7 theme HEALTH, contributing excessively to the EU SDS key challenge “public health”, has one of the largest budgets of the ‘Cooperation’ programme, thus explaining the prominence of projects contributing to the EU SDS’ health objectives.

In addition, it is important to note that not all topics called for in the annual Work Programmes have been translated into action by selecting projects for being funded. While the FP7 theme TRANSPORT comprises the highest number of topics, the number of projects having an impact on the EU SDS key challenge “sustainable transport” is on the lower end of the scale (see Figure 3).

In terms of funding provided to the research projects carried out under FP7’s ‘Cooperation’ programme, Figure 4 shows a similar picture as presented above. Projects contributing to the key challenge “public health” receive a funding of more than € 2,600 million, followed by projects contributing to the key challenge “climate change and energy” with a total EC contribution of more than € 2,000 million. Again, projects contributing to the key challenges “social inclusion, demography and migration” and “global poverty and sustainable development challenges” range at the lower end of the scale, with a total EC contribution of about € 400 million and € 550 million, respectively.
Notably, while the key challenge “conservation and management of natural resources” and the “additional SD objectives” were both addressed by about 400 projects (see Figure 3), the amount of funding provided to the respective projects differs significantly: while projects contributing to key challenge “conservation and management of natural resources” receive a funding of about € 1,600 million, the EC contribution to projects contributing to the “additional SD objectives” is about € 250 million less. This indicates that, on average, projects contributing to key challenge “conservation and management of natural resources” are of larger scale, i.e. they receive more funding per project than those contributing to the “additional SD objectives”. A similar tendency is observable for projects contributing to the key challenges “sustainable transport” and “sustainable consumption and production” (see Figure 3 and Figure 4), with “sustainable transport” being addressed by fewer, but larger-scale projects.

2.3.2 In-depth analysis of key challenges and operational objectives

In the following, the analysis of impacts of FP7 research on the EU SDS key challenges is being broken down to the level of operational objectives. This section therefore focuses on identifying the respective operational objectives comprising the largest share of projects and respective EC contribution.

It is important to note that for each of the seven EU SDS key challenges an additional category (“other expected impacts on this key challenge”) has been introduced in order to

16 Since each project may have impacts on more than one operational objective and/or key challenge, the subtotals (number of projects and amount of funding per key challenge) should not be added up as this would result in potentially overestimated figures!
account for impacts that are clearly related to a particular key challenge, but not covered by the respective operational objectives, such as issues related to ‘understanding of climate change’, ‘transport safety’, ‘healthcare’, ‘food safety & security’, etc.). For some EU SDS key challenges such as “public health” and “social inclusion, demography and migration”, this additional “objective” comprises an important part of impacts contributing to the key challenge.

2.3.2.1 Climate change and clean energy
Within the key challenge “climate change and clean energy”, the operational objective “reducing energy consumption” is addressed most prominently, and with a total of more than 200 projects by far outstrips the other objectives. “Reducing greenhouse gas emission” is another important objective, with about 120 projects contributing to it. The operational objective “raising the share of biofuels” ranges at the lower end of the scale, with less than 50 projects. This picture is also reflected when looking at the distribution of funding (total EC contribution): more than € 970 million are spent on projects contributing to “reducing energy consumption”, followed by “reducing greenhouse gas emissions” with a total EC contribution of some € 580 million. The objective “raising the share of biofuels” accounts for projects receiving a funding of some € 190 million only.

![Figure 5: total EC contribution to projects contributing to EU SDS key challenge "climate change and energy" (€ million)](image)

2.3.2.2 Sustainable transport
The operational objectives “reducing transport greenhouse gas emissions” (about 130 projects) and “achieving sustainable levels of transport energy use” (about 120 projects) account for the largest number of projects contributing to the key challenge “sustainable transport.”
transport”. In contrast, the objectives “modernising the EU framework for public passenger transport”, “decoupling economic growth and demand for transport” and “reducing CO2 emissions from new car fleets” are only addressed by a handful of projects. Looking at project funding (total EC contribution) reveals similar patterns of distribution, with projects contributing to “reducing transport greenhouse gas emissions” and “achieving sustainable levels of transport energy use” receiving funding of almost € 600 million, respectively.

2.3.2.3 Sustainable consumption and production

The number of projects with expected impacts on the operational objectives of “sustainable production and consumption” ranges from about 130 projects related to “encouraging the uptake of environmentally/socially better performing products and processes by businesses and consumers” to only 2 projects addressing the objective of “raising the level of Green Public Procurement (GPP)”. Some 70 projects address the objective of “improving the environmental performance of products and processes”. Looking at the total EC contribution to projects reveals a similar picture, with projects addressing the objective “encouraging the uptake of environmentally/socially better performing products and processes by businesses and consumers” receiving a total EC contribution of almost € 500 million.

2.3.2.4 Conservation and management of natural resources

The operational objectives “improving management and avoiding overexploitation of renewable natural resources” (about 140 projects) and “promotion of eco-efficient innovations” (about 100 projects) account for the largest share of projects addressing this key challenge. In contrast, the objectives “contributing effectively to achieving the four United Nations global objectives on forests” and “halting the loss of biodiversity” account for the lowest number of expected impacts with 12 and 22 projects, respectively. Notably, project funding (total EC contribution) shows a more smooth distribution, with the objectives “improving management and avoiding overexploitation of renewable natural resources”, “promotion of eco-efficient innovations”, “improving resource efficiency” and “avoid generation of waste by applying the concept of life-cycle thinking” being addressed by projects receiving a total EC contribution between € 360 million and € 450 million. Again, the objectives “halting the loss of biodiversity” and “contributing effectively to achieving the four United Nations global objectives on forests” range at the lower end of the scale, accounting for a total EC contribution of less than € 100 million and € 50 million, respectively.
2.3.2.5 Public health

Analysing the EU SDS key challenge “public health” on the level of operational objectives shows a rather interesting picture: in contrast to the other key challenges, most projects contribute to the “other expected impacts on public health” category that was added in order to account for impacts that are clearly related to a particular key challenge, but are not covered by the respective operational objectives. For the “public health” key challenge, this category summarises impacts related to ‘healthcare’, ‘occupational health’, ‘disease control’, ‘food safety & security’, etc., which are addressed by about 300 projects with a total EC contribution of more than € 1,200 million(!). Thus, this category does not only by far outstrip the other operational objectives within “public health”, but also those from the remaining six key challenges.

Out of the remaining “real” operational objectives within “public health”, the objectives “curbing the increase in chronic diseases” and “developing capacities to respond to health threats in a coordinated manner” are addressed most prominently, being addressed by projects receiving a total EC contribution of more than € 900 million and € 600 million, respectively. On the other end of the scale, the objectives “tackling suicide risks” (2 projects), “improving food and feed legislation (incl. labelling)” (6 projects) and “ensure that chemicals, including pesticides, are produced, handled and used in ways that do not pose significant threats to human health and the environment” (10 projects) are addressed least prominently.
2.3.2.6 Social inclusion, demography and migration
Within the key challenge “social inclusion, demography and migration”, the objective “reducing the number of people at risk of social exclusion” and the category “other expected impacts on social inclusion, demography and migration” (referring to a variety of issues related to social inclusion, including social policy) account for the largest number of projects with expected impacts, with slightly above and below 50 projects, respectively. Notably, the objectives “reducing the number of people at risk of poverty”, “reducing child poverty” and “reduce negative effects of globalisation on workers and their families” are not being addressed at all by FP7 research projects. The distribution of project funding across objectives depicts a similar picture, with the objective “reducing the number of people at risk of social exclusion” and the category “other expected impacts on social inclusion, demography and migration” accounting for projects receiving a total EC contribution of about €170 million and €110 million, respectively.

2.3.2.7 Global poverty and sustainable development challenges
The key challenge “global poverty and sustainable development challenges” is characterised by a dominance of projects addressing the objective “contributing to achieve the Millennium Development Goals”. With some 110 projects accounting for a total EC contribution of about €460 million, it by far outstrips the other objectives within the key challenge. Notably, the objective “raising the volume of Official Development Assistance (ODA)” is not addressed at all by FP7 research projects, and the objectives “promoting SD in the context of WTO negotiations”, “increasing the coherence of aid policies” and “including SD concerns in all EU external policies” are addressed by a handful of projects only.

2.3.2.8 Additional SD objectives
Out of the additional SD objectives that complement the EU SDS objectives in order to account for additional issues included in national SD strategies (NSDSs) only, the two objectives “protection against natural disasters” and “maintaining public security and protection” are addressed most prominently, with some 130 and 140 projects, respectively. In terms of project funding, the two objective accounts for more than €460 million and €410 million, respectively. “Promoting and strengthening SD governance” represents another important objective, being addressed by about 70 projects with a total EC contribution of more than €270 million. On the other end of the scale, “promoting sustainable tourism” is addressed by 5 projects only, accounting for a total EC contribution of some €10 million.
2.3.2.9 Concluding remarks on the analysis of operational objectives

When comparing the structure of the operational objectives within the various EU SDS key challenges, it becomes obvious that for some key challenges the contribution of FP7 research projects is focused on one or two specific objectives. This is mainly the case for the key challenges “climate change and clean energy” (objective “reducing energy consumption”), “public health” (category “other expected impacts on public health”), “global poverty and sustainable development challenges” (objective “contributing to achieve the Millennium Development Goals”) and the “additional SD objectives” (objectives “protection against natural disasters” and “maintaining public security and protection”).

In contrast, the key challenges “sustainable transport”, “sustainable consumption and production”, “conservation and management of natural resources” and “social inclusion, demography and migration” show a more smooth distribution of expected impacts across the respective operational objectives.

Comparing the funding allocated to projects across the EU SDS key challenges (including the “additional SD objectives”) reveals the following picture (see Figure 8): projects contributing to the “other expected impacts on public health” receive a total EC contribution of more than € 1,250 million, followed by the objectives “reducing energy consumption” and “curbing the increase in chronic diseases”, accounting for a project funding of € 970 million and € 900 million, respectively.
As Figure 8 shows, 3 out of the top 4 objectives (in terms of project funding) relate to the key challenge “public health”. This goes conform to the findings presented further above, i.e. that the EU SDS key challenge “public health” is addressed most prominently by research conducted in FP7. Other important objectives, indicated by the EC contribution related to them, are “reducing energy consumption” and “reducing greenhouse gas emissions” (from the key challenge “climate change and clean energy”), and “achieving sustainable levels of transport energy use” and “reducing transport greenhouse gas emissions” (from the key challenge “sustainable transport”).

2.3.3 Investigating the “centres of excellence” of research for SD across Europe

While the previous sections analysed the FP7 contribution to the EU SDS key challenges based on all projects funded so far within FP7, this section investigates differences between EU Member States by breaking down the data of the monitoring system to the national level. It thereby draws on the so-called “Geographical View” of the interactive database on www.fp7-4-sd.eu and analyses the number of project coordinators with respect to the EU SDS key challenges. Differences in the number of project coordinators between Member States are interesting because in order to successfully coordinate a project, the respective institutions are usually characterized by an exceptional scientific knowledge base and the essential coordination skills to implement the respective project, thus providing information on the “centres of excellence” as regards research for sustainable development within the EU.

When interpreting the figures presented in this section, it has to be acknowledged that the size of population in the Member States is in most instances highly correlated with the number of researchers and research infrastructures. Consequently, the large countries Germany, United Kingdom, Italy and France are usually on the top, i.e. having the highest number of project coordinators across Europe. The analyses presented here therefore also
aim at investigating centres of excellence in smaller countries, i.e. those having a high number of coordinators with respect to population size.

Figure 9 shows the number of projects coordinators of FP7 research projects contributing to the EU SDS key challenges in EU Member States and countries associated to FP7. With more than 300 coordinators, Germany is on the top, followed by the UK (about 260 coordinators), Italy (about 210 coordinators) and France (about 190 coordinators). Together, project participants from these four countries coordinate more than 50% (!) of all FP7 research projects contributing to SD.

The Netherlands and Belgium constitute additional centres of excellence as regards SD related research, with some 140 and 110 project coordinators, respectively.

2.3.3.1 Climate change and clean energy

Germany accounts for the by far largest number of coordinators of projects contributing to the key challenge “climate change and clean energy”. With some 90 project coordinators, about 20% of all projects related to this key challenge are coordinated by German project participants. Besides Germany the EU Member States Italy, the UK and France constitute other important centres of excellence, with about 50 project coordinators each.
2.3.3.2 Sustainable transport

Within the key challenge “sustainable transport” France and Germany represent important centres of excellence, with about 40 project coordinators each, thus together coordinating about one third of all FP7 projects with impacts on this area. Relatively high numbers of project coordinators also come from Italy, the United Kingdom and – notably – Belgium, with about 30 project coordinators each.

2.3.3.3 Sustainable consumption and production

The largest numbers of coordinators of projects contributing to the key challenge “sustainable consumption and production” come from Germany (some 55), the UK and Italy (about 40 each). Notably, Belgium and the Netherlands are on a level with France, with about 20 project coordinators each, only exceeded by Spain with some 35 coordinators. Again, participants from the four biggest countries (in terms of number of project coordinators; these are: Germany, UK, Italy, Spain) coordinate more than 50% of all FP7 projects with impacts on this key challenge.

2.3.3.4 Conservation and management of natural resources

Similar to the observation with respect to the key challenge “climate change and clean energy” above, Germany again accounts for the by far largest number of coordinators of projects contributing to the key challenge “conservation and management of natural resources”. With some 75 project coordinators, the share of projects contributing to this key challenge and being coordinated by German participants ranges slightly below 20%. The UK and France – again – constitute other important centres of excellence, with some 45 project coordinators each. Notably, except for Hungary and Poland, there are no project coordinators from Eastern European countries with regard to this key challenge.

2.3.3.5 Public health

The countries with the highest numbers of project coordinators within the key challenge “public health” are Germany and the United Kingdom, with some 120 and 100 coordinators, respectively. Project participants from these two countries together coordinate about one third of all projects contributing to this key challenge. Other important centres of excellence are Italy, the Netherlands and France, with about 65 project coordinators each. Adding up the five countries comprising the largest number of project coordinators reveals that almost two thirds of projects contributing to “public health” are coordinated by project participants from Germany, the UK, Italy, the Netherlands and France.

2.3.3.6 Social inclusion, demography and migration

Analysing the number of project coordinators with respect to “social inclusion, demography and migration” shows a rather smooth picture, i.e. the differences between the EU Member States are significantly smaller as compared to the other key challenges. Nevertheless, Germany accounts for the largest number of project coordinators (some 25), followed by the UK, Italy and the Netherlands with about 15 project coordinators each. Similar to the picture presented in the key challenge “conservation and management of natural resources” above, there are rarely no project coordinators from Eastern European countries with regard to “social inclusion, demography and migration”.

27
2.3.3.7 Global poverty and sustainable development challenges
Projects contributing to the key challenge “global poverty and sustainable development challenges” are mainly coordinated by participants coming from the UK (some 35 coordinators) and France (some 25 coordinators). Germany, being the most prominent centre of excellence for a number of other key challenges, ranks third, being level with Belgium, the Netherlands and Spain (about 15 coordinators each). Again, the number of project coordinators from Eastern European countries is remarkably low.

2.3.3.8 Additional SD objectives
With respect to the “additional SD objectives” that complement the EU SDS objectives in order to account for additional issues included in national SD strategies (NSDSs) only, Germany, the UK and Italy hold the largest share of project coordinators (some 60 coordinators each). Together, participants from these three countries coordinate more than 40% of the projects impacting on the objectives listed hereunder.

Focusing the analysis on the objective of “promoting and strengthening SD governance” shows the UK in front, followed by Italy, France, the Netherlands and Germany. Due to the overall small number of projects contributing to SD governance, differences between the five “leading” countries (with about 10 project coordinators each) and the rest of Europe are, however, rather small (see Figure 10).
2.3.3.9 **Low-carbon research**

By combining the available “views” and filter options of www.fp7-4-sd.eu, it is not only possible to focus the analysis on particular FP7 themes or EU SDS key challenges, but to analyse the database with regard to issues not directly taken into account for the scientific evidence-based screening (although these issues need to be able to be “recreated” by using the filter options). An example of such an issue is “low-carbon” research, i.e. research contributing to the aim of reaching a “low-carbon economy”, as outlined in the Commission communications on “An Energy Policy for Europe” ([European Commission, 2007b](http://eur-lex.europa.eu)) and on the new “Europe 2020” strategy ([European Commission, 2010b](http://ec.europa.eu)).

Similar to the picture drawn from analysing the EU SDS key challenges, the largest amount of projects contributing dealing with “low-carbon” research are coordinated by German participants (some 160 coordinators), followed by participants from the UK (115 coordinators), Italy (100 coordinators) and France (90 coordinators). Spain, the Netherlands and Belgium, ranging between 60 and 70 project coordinators, constitute additional prominent centres of excellence.
2.3.3.10 Concluding remarks on the analysis of European centres of excellence

As already mentioned above, analysing the European research landscape with regard to impacts on the EU SDS key challenges shows large countries, in particular Germany, the United Kingdom, Italy and France, usually on the top, i.e. a large share of projects contributing to EU SDS key challenges and objectives are coming from these four countries. Analysing the EU SDS key challenges overall, project participants from these four countries coordinate more than 50% of all FP7 research projects contributing to SD.

This picture, however, changes when focusing the analysis in specific key challenges. With regard to the key challenges “climate change and clean energy” and “conservation and management of natural resources”, Germany constitutes a prominent centre of excellence, with German participants coordinating about 20% of all FP7 research projects related to these areas. The key challenges “sustainable transport” and “global poverty and sustainable development challenges” are the only two for which other European countries (France and the UK) outstrip Germany in terms of number of project coordinators. Besides the above mentioned four “leading” countries, the Netherlands and Spain constitute additional centres of excellence, in particular as regards “public health”, “sustainable consumption and production” and “social inclusion, demography and migration”. Notably, the number of project coordinators from Eastern European countries is generally low, in particular with respect to the key challenges “conservation and management of natural resources”, “social
inclusion, demography and migration” and “global poverty and sustainable development challenges”.

3 National Sustainable Development Strategies and Research and Development for Sustainable development

This section provides a general overview of the research and development (R&D) targets set out in the National Sustainable Development Strategies (NSDS) of the 27 EU Member States. The aim of this section is to:

(1) detect which topics, sectors, cross-cutting issues of sustainable development are promoted in the national research agendas within the NSDS:
(2) identify at which level the research strengthening efforts (as a strategic goal, or as an action measure) are targeted;
(3) provide a short overview of and describe the concrete R&D targets and actions in various strategic directions and key sectors of sustainable development.

This information is summarized in Table 1. The data was gathered through screening the NSDS documents for the following key words: “RESEARCH”, “R&D”, “RTD” (Research and technological development). The overview includes information on 23 strategies; the NSDS of Luxembourg and France are only available in French; Bulgaria could not be screened on keywords, due to its special format conditions; and Poland still has no NSDS.

Table 1: Tabular overview of R&D for sustainable development in the NSDS
Austria

Research and Development (R&D) in NSDS
R&D has been targeted in two of the five main SD priorities and objectives in the NSDS. The fields include the area of economy and innovation and landscape, ecosystem and biodiversity.

<table>
<thead>
<tr>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
</table>
| Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |

Belgium

Research and Development (R&D) in NSDS
R&D has been prioritized in three action fields of the strategy out of 24 action areas. The focus of R&D expansion is mainly on environmental issues of SD in various topics as in energy efficiency, sustainable agriculture and reorienting research towards the SD model by increasing R&D in various sectors.

<table>
<thead>
<tr>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Education and research</td>
<td>Innovative structures promote competitiveness.</td>
</tr>
<tr>
<td>International cooperation and Financing</td>
<td>To promote need-oriented research and increase R&D funding, in innovation structures towards the model of SD. The concrete objectives are to catch up with the research quota of 2.5% of GDP by 2005, and to establish the core issues of SD in R&D as resource efficiency, space relevance, participative approaches. Guiding principles of research policy.</td>
</tr>
</tbody>
</table>
| To protect the environmental media through the establishment of both basic scientific and problem-solving research and a nationwide system of environment-mental quality targets.
2) To achieve biodiversity protection, focus research programmes must be developed and implemented in cooperation with the relevant users of space.
3) To promote existing research and technology grants focussed particularly on sustainability-relevant objectives in the transport sector. |
| To consolidate Austria’s position in the EU framework programmes for R&D in the field of sustainability research. |
| To encourage R&D on the above sectors offering growth prospects on SD, in order to move on the high-added value. |
| To boost R&D partnerships between private and public sectors at national, European and international level for developing cost effectively new medical technologies. |
| To support R&D in the above mentioned fields and re-orient scientific and technological research towards the target of climate policy. |

Cyprus

Research and Development (R&D) in NSDS
R&D is being set as a goal in three specific areas out of 10 action fields. The government’s goal is to aid the growth of R&D, shifting the economy towards the development of services with high added value. The areas where R&D should be promoted are the fields of social integration, cross-cutting activities as environmental education and on the economic fields of RDT and innovation.

<table>
<thead>
<tr>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Social Integration and Demography</td>
<td>To replace low added value with high added value with reinforcement of applied research and growth in the productive process.</td>
</tr>
<tr>
<td>Environmental Education/EE</td>
<td>To promote research of implementation measures as EE or ESD education programmes.</td>
</tr>
<tr>
<td>R&D and Innovation</td>
<td>To aid the growth of R&D, shifting the economy towards the development of services with high added value.</td>
</tr>
</tbody>
</table>

Czech Republic

Research and Development (R&D) in NSDS
R&D has been mentioned in two of the five main SD priorities and objectives in the NSDS. The fields include the area of economy and innovation and landscape, ecosystem and biodiversity.

<table>
<thead>
<tr>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
</table>
| Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |

Denmark

Research and Development (R&D) in NSDS
The government has established the Environmental Assessment Institute to conduct research at the high international level in the environmental field. R&D has been mentioned in two of the cross-cutting activities/out of 5 and in 4 out of 7 key sectors for SD.

<table>
<thead>
<tr>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
</table>
| Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |
| Sectors | Cross-cutting activities
1) agriculture and fisheries (under the heading of “food production”),
2) forestry,
3) industry, trade and services,
4) energy,
5) climate change,
6) biodiversity. |

Estonia

Research and Development (R&D) in NSDS
R&D is prioritised in one of the main goals of the strategy: “Growth for Welfare” and in two cross-cutting action fields: “Education” and “R&D and innovation”, out of the four described in the strategy. In the action areas the aim is to support the shift to a more knowledge society.

<table>
<thead>
<tr>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
</table>
| Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |
| Sectors | Cross-cutting activities
1) agriculture and fisheries (under the heading of “food production”),
2) forestry,
3) industry, trade and services,
4) energy,
5) climate change,
6) biodiversity. |

Summary

<table>
<thead>
<tr>
<th>Country</th>
<th>Research and Development (R&D) in NSDS</th>
<th>Area</th>
<th>Objective/sector/topics</th>
</tr>
</thead>
</table>
| Austria | R&D has been targeted in two of the five main SD priorities and objectives in the NSDS. The fields include the area of economy and innovation and landscape, ecosystem and biodiversity. | Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| | | Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |
| Belgium | R&D has been prioritized in three action fields of the strategy out of 24 action areas. The focus of R&D expansion is mainly on environmental issues of SD in various topics as in energy efficiency, sustainable agriculture and reorienting research towards the SD model by increasing R&D in various sectors. | Education and research | Innovative structures promote competitiveness. |
| | | International cooperation and Financing | To protect the environmental media through the establishment of both basic scientific and problem-solving research and a nationwide system of environment-mental quality targets.
2) To achieve biodiversity protection, focus research programmes must be developed and implemented in cooperation with the relevant users of space.
3) To promote existing research and technology grants focussed particularly on sustainability-relevant objectives in the transport sector. |
| | | To consolidate Austria’s position in the EU framework programmes for R&D in the field of sustainability research. | To encourage R&D on the above sectors offering growth prospects on SD, in order to move on the high-added value. |
| | | To boost R&D partnerships between private and public sectors at national, European and international level for developing cost effectively new medical technologies. | To support R&D in the above mentioned fields and re-orient scientific and technological research towards the target of climate policy. |
| Cyprus | R&D is being set as a goal in three specific areas out of 10 action fields. The government’s goal is to aid the growth of R&D, shifting the economy towards the development of services with high added value. The areas where R&D should be promoted are the fields of social integration, cross-cutting activities as environmental education and on the economic fields of RDT and innovation. | Social Integration and Demography | To replace low added value with high added value with reinforcement of applied research and growth in the productive process. |
| | | Environmental Education/EE | To promote research of implementation measures as EE or ESD education programmes. |
| | | R&D and Innovation | To aid the growth of R&D, shifting the economy towards the development of services with high added value. |
| Czech Republic | R&D has been mentioned in two of the five main SD priorities and objectives in the NSDS. The fields include the area of economy and innovation and landscape, ecosystem and biodiversity. | Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| | | Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |
| Denmark | The government has established the Environmental Assessment Institute to conduct research at the high international level in the environmental field. R&D has been mentioned in two of the cross-cutting activities/out of 5 and in 4 out of 7 key sectors for SD. | Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| | | Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |
| | | Sectors | Cross-cutting activities
1) agriculture and fisheries (under the heading of “food production”),
2) forestry,
3) industry, trade and services,
4) energy,
5) climate change,
6) biodiversity. |
| Estonia | R&D is prioritised in one of the main goals of the strategy: “Growth for Welfare” and in two cross-cutting action fields: “Education” and “R&D and innovation”, out of the four described in the strategy. In the action areas the aim is to support the shift to a more knowledge society. | Economy and innovation | To foster R&D in following areas:
1) sustainability of the energy sector and materials management
2) human resource development. |
| | | Landscape, eco-systems and biodiversity | Special measures on R&D are aimed in two out of three priority areas:
1) landscape conservation as a prerequisite for biodiversity conservation.
2) adaptation to climate change. |
| | | Sectors | Cross-cutting activities
1) agriculture and fisheries (under the heading of “food production”),
2) forestry,
3) industry, trade and services,
4) energy,
5) climate change,
6) biodiversity. |
Finland

R&D in NSDS
Research has been targeted and envisioned in the objectives of 3 priority areas of the strategy (out of 9): (1) sustainable society, (2) the economy as a safeguard for SD, (3) supporting sustainable choices. The promotion of R&D has been mostly covered in all important fields of SD from the economic and environmental perspective.

Area
- Sustainable society
- Economy

Objective/Sectors/Topics
- One of the sub-fields “The balance between the use and protection of natural resources” includes efforts for R&D in following objectives:
 1. Adapting to the adverse effects of climate change,
 2. Ensuring biodiversity,
 3. SCP.

Targets/Actions
- A research programme on adaptation to climate change will be implemented in 2006–2010, with the target of increasing Finland’s readiness to adapt to climate change. Moreover, the promotion of research in developing business innovations in the area of biodiversity has been emphasised. (3) In the field of SCP, public research will be directed at a new generation of environmental policy that combines various sciences and technologies.

Area
- Sustainable society
- Economy

Supporting sustainable choices
- The economy as a safeguard for SD

Action fields
- On of the sub fields where R&D and education for SD should be aimed is the sub-field of “Research and development, know-how and innovations”.

Germany

Area
- Economy

Objective/Sectors/Topics
- One of the subfields “The balance between the use and protection of natural resources” includes efforts for R&D in following objectives:
 1. Energy efficiency;
 2. Mobility;
 3. Sustainable production and healthy nutrition.

Targets/Actions
- 1) Energy efficiency;
- 2) Mobility;
- 3) Sustainable production and healthy nutrition.

Area
- Economy

Targets/Actions
- The target is to enhance innovation and inventions for SD into successful products on the market and to invest in promising research fields of SD. Moreover, the aim in this area is to achieve sufficient volume and a good level of quality in the research fields of bio and environmental science, the welfare cluster and knowledge-intensive services.

Greece

Area
- Economy

Objective/Sectors/Topics
- One of the subfields “The balance between the use and protection of natural resources” includes efforts for R&D in following objectives:
 1. Knowledge and education
 2. Innovation

Targets/Actions
- 1) Knowledge and education
- 2) Innovation

Ireland

Area
- Agriculture

Objective/Sectors/Topics
- 1) Waste management and viable nutrition;
- 2) Rural landscapes;
- 3) Afforestation.

Targets/Actions
- 1) Waste management research measures under the operational programme for fisheries
- 2) To develop high quality and R&D capacities through a flexible research system, in order to extract more research and enable more innovation in various key fields of SD.

Italy

Area
- Environmental quality

Objective/Sectors/Topics
- To promote research concerning the electromagnetic fields and prevention of health risks.

Targets/Actions
- To promote research concerning the electromagnetic fields and prevention of health risks.
Estonia Quarterly Report June 2010

“Research & development for SD”

Latvia

R&D in NIDS

The strategy addresses various goals for R&D in 3 strategic areas in order to achieve the recommended policy results (water, biodiversity, employment) and one cross-cutting activity (education and research) out of 15 action areas displayed in the strategy.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Lithuania

In the strategy science and knowledge are identified as the driver of the modernisation of the society and economy for SD. R&D has been prioritised in mostly all action fields of economic and social development mentioned in the strategy. Moreover, the strategy mentions efforts to strengthen research on relevant sustainability issues in mostly all strategic directions (3 out of 4 areas): (1) managing the environment and resources, (2) promoting sustainable development, and in (3) fostering sustainable communities: as education for SD.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Malta

The strategy aims to encourage more research in relevant areas of sustainability, as the basis for a knowledge society. Through the National Strategic Plan 2007-2010, Malta undertook a major step in setting a vision and building a framework for national research and innovation. The strategy for SD mentions efforts to strengthen research on relevant sustainability issues in mostly all strategic directions (3 out of 4 areas): (1) managing the environment and resources, (2) promoting sustainable development, and in (3) fostering sustainable communities: as education for SD.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Spain

The strategy differs between the three various sustainability levels: environmental, social and global. Measures to strengthen R&D concentrate in all areas and in some cross-cutting activities.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Netherlands

The action programme for SD of Netherlands is sub-divided in the national and international part. The Netherlands' government aims to become a front-runner in higher education, research and innovation. Both parts of the strategy emphasise the goal of strengthening R&D mostly in energy management issues (national level: 1 out of 11 key themes identified and at the international level, 1 out of 5 themes). Moreover, R&D is mentioned in one of the seven cross-cutting tools.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Romania

The general aim of the strategy towards R&D is to connect research to the mainstream scientific and technological development within the EU and produce essential contributions of Romania towards the complex objectives of SD. R&D has been mentioned in the strategy in 4 key challenges out of 6 and has been prioritised in one cross-cutting policy areas such as “R&D and Innovation”.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Latvia

The national part of the strategy focuses on the expansion of the research to topics such as renewable energy and energy efficiency.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Lithuania

The national part of the strategy focuses on the development of commercial exploitation of knowledge in Latvia.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Malta

The national part of the strategy focuses on the development of commercial exploitation of knowledge in Latvia.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>

Spain

The national part of the strategy focuses on the expansion of the research to topics such as renewable energy and energy efficiency.

<table>
<thead>
<tr>
<th>Area</th>
<th>Tools for SD</th>
<th>Research and development, innovation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic and environmental aspects</td>
<td>- Financial management</td>
<td>- Technology base</td>
</tr>
<tr>
<td>Social aspects</td>
<td>- Actively engaging in R&D initiatives</td>
<td>- Social development</td>
</tr>
</tbody>
</table>
ESDN Quarterly Report June 2010

“Research & development for SD”

<table>
<thead>
<tr>
<th>Area</th>
<th>Strategic goal</th>
<th>Implementation tools</th>
</tr>
</thead>
<tbody>
<tr>
<td>R&D in NSDS</td>
<td>The strategy identifies the scientifically based knowledge as a decisive factor for SD and as the basis on which to make strategic choices in policy making. It therefore, mentions the effort for expanding research in its strategic challenges of sustainable development.</td>
<td>It mentions R&D in the implementation tools of the strategy. It mentions R&D in 2 out of 5 tools how to shift the society towards the model of SD.</td>
</tr>
<tr>
<td>Slovakia</td>
<td>New Strategy</td>
<td>Sustainable growth.</td>
</tr>
<tr>
<td>Objectives/Topics</td>
<td></td>
<td>1) sustainable public procurement;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) education, culture, information and influencing attitudes.</td>
</tr>
<tr>
<td>Targets/Actions</td>
<td>The government aims to encourage sustainable growth, by shifting the state support research toward the priorities of SD. The last two research bills as the “Research for Renewal and Research for a “Better Life”, “Research and new technology for tomorrow’s energy system” have prioritised SD.</td>
<td>1) Government’s objective for public procurement is to stimulate effectively innovation, thereby powering research and technical development and encouraging renewal in the private sector.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2) Education and research in combination with skills training that reflects sustainability concerns is one key to sustainable social development in Sweden.</td>
</tr>
<tr>
<td>Swedish Strategy, Business: The Carbon Trust, Research for Renewal and Research for a “Better Life”, “Research and new technology for tomorrow’s energy system”</td>
<td>Promotion of knowledge needed for economic development and quality jobs”.</td>
<td>Research for SD is mentioned in 1 of the 5 key development areas of the strategy: “Promotion of knowledge needed for economic development and quality jobs”.</td>
</tr>
<tr>
<td>R&D in NSDS</td>
<td>The strategy emphasizes new research approaches in various areas of SD. The Government has commissioned research especially in new indicators, in various fields of SCP and environmental protection. Moreover, it has played a key role in promoting research on climate change topics as well as its impact on various sectors and sustainable communities.</td>
<td>The government will allocate funds for further research on the causes of environmental inequality and the effectiveness of measures to tackle it.</td>
</tr>
<tr>
<td>Objective/sectors/topics</td>
<td>Integration of sustainable production with wider business support and R&D best business practices.</td>
<td>Integration of sustainable production with wider business support and R&D best business practices.</td>
</tr>
<tr>
<td>Targets/Actions</td>
<td>The UK Government aims to commission research on new indicator sets especially in the field of environmental equality and social justice. Sustainable Development Research Network and the Environment and Social Justice Rapid Research and Evidence Review will provide foundation for further work.</td>
<td>The government aims to commission projects in the estimation of the social cost of carbon and its application to policy assessment and aims to support country-led research in CCH for emerging countries.</td>
</tr>
<tr>
<td>Sweden</td>
<td>The Strategy mentions one of its strategic goals the need of “Building a modern and quality educational system, support of science and research”.</td>
<td>The UK Government aims to commission research on new indicator sets especially in the field of environmental equality and social justice.</td>
</tr>
<tr>
<td>Sustainability</td>
<td>Building a modern and quality educational system, support of science and research.</td>
<td>There is not a specific goal aiming the specific research shift towards SD priorities. However, scientific and research projects oriented to SD issues are being solved at number of universities and institutes of the Slovak Academy of Science.</td>
</tr>
<tr>
<td>Sweden</td>
<td>1) Government aims to commission research on new indicator sets especially in the field of environmental equality and social justice.</td>
<td>The focus is on the technological areas linked to economic activities for a higher added value, the applicability of the “two-way flow” of knowledge between research institutions and business and the increasing of funding for R&D to 1% of the GDP.</td>
</tr>
<tr>
<td>Area of the strategy: “Promotion of knowledge needed for economic development and quality jobs”.</td>
<td>1) More information on the work of SDRN and national research programmes on SD, will be provided in the next sub-section.</td>
<td>1) More information on the work of SDRN and national research programmes on SD, will be provided in the next sub-section.</td>
</tr>
</tbody>
</table>

United Kingdom

New Strategy, Consumption and Cross-cutting through various sectors

1. Inaction of climate change (estimates of social cost of carbon)
2. Impact of climate change in various sectors (business, transport, households)

Climate change, Local inequalities

1. Government aims to commission research on new indicator sets especially in the field of environmental equality and social justice. Sustainable Development Research Network and the Environment and Social Justice Rapid Research and Evidence Review will provide foundation for further work.

Conclusion

The report emphasizes the importance of research and development in supporting sustainable development goals. It highlights the strategic goals and implementation tools in Sweden, Slovakia, and Slovenia, along with the targets and actions for achieving these goals. The UK Government’s emphasis on new research approaches is also discussed, with a focus on economic development and social justice. The report concludes with a call for more information on national research programmes on sustainable development, with a view to providing support and guidance for future work.
“Research & development for SD”

Source: NSDS strategies, own analysis
3.1 **Similarities of R&D measures between EU Member States NSDS**

This section provides a summary and a clarification of the results presented in Table 1. Firstly, it shortly outlines the overall spending for R&D and the public and private sector shares of this funding in the various EU Member States. It then categorises the similarities of different NSDS in R&D targets for SD into economic, environmental, social development for SD topics and cross-cutting issues such as education, sustainable consumption and production.

Most countries included in Table 1 share a general aim of fostering R&D as the main driver of increasing innovation and, therefore, competitiveness as well as securing higher attraction for science and research. The efforts in increasing the percentage of R&D in the GDP has been an answer to the EU-wide goal of achieving a 3% investment in R&D targets as set out in the Lisbon Strategy; this objective has been renewed in the “Europe 2020” strategy. (EurActive, 04.06,2010)

The distinction in the target setting can be categorized in two groups, the “old” (EU-15) and the “new” Member States (EU-11). According to the target system in the NSDS, the old Member States aim to consolidate their position in R&D and RTD programmes in the field of sustainability research (Austria, Netherlands, Finland and Denmark, Sweden) and to reach the target of 3% of GDP invested in R&D. According to Eurostat, Sweden has been the best performer in R&D investment, with 3.6% of GDP in 2007. No other country surpassed the 3% threshold. Austria was the second-best performer with 2.56%. (EurActive, 04.06,2010). Based on the NSDS, new Member States (EU-1) set a target of 1 to 1.5% of GDP invested in R&D. However, this picture has changed; in preparation of “Europe 2020”, the Southeast and Eastern European Countries have adopted a 2.5% target. The Czech Republic, however, appears to challenge the perception that East European Member States will be unable to reach the 3% target by 2020. Surprisingly, the government proposed an even higher national target than the more modest 2.3% proposed by the European Commission. (EurActive, 04.06,2010)

Regarding the division of research funding in public and private research mainly all strategies break down the R&D funds between various sectors – public, private and EU Structural Funds. Countries mostly aim to shift more R&D for sustainability on the private sector while also improving the coordination of research efforts between the private and public sector. Indeed, many countries have re-organised their institutional settings towards a better coordination between public and private research institutions and between administrative decision makers and scientific communities on a more general level. However, no data is available in the strategies on the national targets for R&D funding composition from the private and from the public sector.

The similarities of R&D targets and actions set in various NSDS can be broken down into four domains: strengthening R&D in economic, environmental, social development aspects and cross-cutting SD topics.
3.1.1 Economy and Sustainable Development

In the area of economy and SD, investments in R&D are regarded as the driver for a more competitive economy and a knowledge-based society. The efforts for increasing R&D are mostly related to the concept of “ecological modernisation”. This seeks structural change on the macro-economic level through minimising the impact on environment through less reliance on resource-intensive industries, reorienting towards service and knowledge-based industries. Mostly all countries call for such a modernisation in their strategic objectives.

The common topics where R&D should be strengthened in this area and the similarities between the goals of different countries are outlined below:

a) **Research, technological development and innovation**: The target is to move towards an innovation-centred economy by strengthening the link between private and public research and support the transition from research to the development of products.

b) **Competitiveness**: R&D should be further promoted in various economic sectors, as the main driver for innovation and therefore productivity and competitiveness.

c) **Business and R&D**: The target is to increase the placement of R&D for sustainability on the private sector;

a) **Energy efficiency**: The main goal is to strengthen research on energy efficiency issues in key economic sectors; (i.e. transport, agriculture, industry, trade and services, tourism);

d) **Sustainable manufacturing**: The main aim of various strategies is to strengthen the role of the private sector in R&D. Measures aimed to provide advice and incentives and assist the manufacturing industry in energy conservation, water recycling and active engagement in R&D for innovation in both products and processes.

3.1.2 Environment and Sustainable Development

Common topics of environmental sustainability R&D oriented measures in mostly all strategies are:

b) **Biodiversity**: measures to ensure the ecological and biological research regarding the endangered species;

c) **Climate Change and Energy**: research on related factors triggering climate change, regulation and processes; inaction of climate change (social costs of climate change), impacts of climate change in various sectors

d) **Water quality and protection**;

e) **Resource management**.

3.1.3 Society and Sustainable Development

Although most countries have included in their strategies the aspects of social sustainability, mainly tackling these through adverting unsustainable trends in society (consumption patterns, social cohesion, integration, sustainable communities, changes in life style), only a few countries have specified measures towards the promotion of R&D in these fields. The strategies mostly emphasised the role of scientific research for reversing unsustainable societal choices, however, it remains unspecified which concrete topics need attention in this area. According to their strategies, countries as Austria, Germany, Cyprus, Hungary, United Kingdom have especially
emphasised efforts in investing R&D in crucial areas of societal sustainability (i.e. sustainable living, quality of life).

3.1.4 Cross-cutting issues

The main focus of R&D measures in the cross-cutting topics was innovation. These measures are aimed at improving the general framework for research and innovation towards more eco-innovation or reorienting it to the needs of an SD model (described above). Most strategies address the R&D targets and measures on the following cross-cutting research areas:

a) **Education**: The targets in the majority of the strategies were the following: (1) to develop an educational system which is integral for R&D activities in SD relevant fields; (2) to promote research into environmental education; and (3) to ensure the effectiveness of SD education programmes.

b) **R&D and Innovation**: The focus has been on environmental, sociological and economic research for innovation in various sectors. The overall aim in the majority of the strategies is contribution of R&D and Innovation to the implementation of SD principles. The measures varied on a country-to-country basis.

c) **Sustainable Consumption and Production**: Mostly all countries have stressed the importance of increasing R&D in the production and consumption processes for more sustainable patterns. According to the strategies, R&D should be focussed on those sectors where the expected effects are most significant in terms of ecological progress and competitiveness (organic foods, water management technology, energy efficiency, urban transport, industrial processes, construction businesses)

4 Overview of national research programmes of two EU Member States

After the general overview of R&D targets in NSDS, this QR outlines the attempts of two countries in compiling and funding national research programmes for sustainable development. In most EU Member States, there have been diverse research programmes on various key fields of SD. The European Commission has also organised a workshop for providing an overview of Research for SD and the state of research in the various EU Member States is summarised in a workshop document (European Commission, 2007c). However, only a few countries have developed national research programmes on SD. Therefore, we choose to provide two good practices: the Austrian national framework strategy for research for SD (2004) and the German Framework programme on Research for SD (2010-2015). The two cases will include information on funding, research topics of SD, responsible institution and linkages of the research programmes to the NSDS target system.
4.1 Austrian framework strategy on research for sustainable development (FORNE)

The joint research initiative “Research for sustainable development” (FORNE-Forschung für Nachhaltige Entwicklung) was launched in 2004 by the Austrian Council for Research and Technological development. It responded to the need of further consolidating Austria’s research for sustainable development for its international position and to nationally better coordinate the implementation of the Austrian Sustainable Development Strategy with the Austrian research programmes.

The initiative was then transformed to an overarching national framework strategy for research for sustainable development in 2004, which integrated all different research programmes under an umbrella of a common objective (see the sub-programmes in 4.1.1). The national programme was developed together by the Federal Ministry of Science and Research, the Federal Ministry of Transport, Innovation and Technology, the Federal Ministry of Agriculture, Forestry, Environment and Water Management and the Austrian Council for Research and Technology Development. The three ministries together with the Council also coordinate the program activities in the field of sustainable development (Paula et al., 2004).

The framework strategy aims to integrate all different research programmes under a common strategic umbrella and to provide a coherent framework for orienting research for SD. The fundamental goals of FORNE are:

1) Improving living conditions and the environment by:
 a) Creating sustainable natural, social and technological systems and
 b) securing a viable economic location on a long-term basis

2) Improving competitiveness of the economy and science systems by:
 a) improving R&D
 b) securing a viable economic location on a long-term basis.

The objectives are valid for the various research programmes of FORNE, but are differently weighted. Moreover, the target system of FORNE is being continuously redeveloped. (FORNE Homepage) and adapted to the priority targets of the Austrian NSDS. The steering committee of the research framework strategy-FORNE and the Austrian Council for SD also hold regular meetings for coordinating the research strategy with the SD strategy targets system.

4.1.1 Research sub-programmes of the framework strategy for sustainable development (FORNE)

The FORNE framework strategy “Research for SD” in Austria includes various research sub-programmes of the three ministries which launched the joint initiative. These sub-programmes are aimed at implementing the strategic framework on “Research for SD”. Moreover, they create the scientific basis for the country’s sustainable development strategy. The sub-programmes can be divided into three categories:

1) The research programmes of the Federal Ministry of Science and Research, also known as “Pro-Vision-plus”.

2) The research programmes of the Federal Ministry of Transport, Innovation and Technology are to be found under the Austrian Program on Technologies for Sustainable Development. The latter one is sub-divided into three other sub-programmes: “Building of tomorrow”, “Factory of tomorrow”, and “Energy systems of tomorrow”.

Box 1: Key findings on “Pro Vision plus” for nature and society

Focus: Pro-Vision-plus focuses on the relationships between climate change, spatial development and quality of life.

Objective: it is aimed at making knowledge available for solving the most urgent problems in provision for nature and society: adaptation to climate change and its consequences, suitable life and work models, responsible use of natural and industrial resources, and environmental protection.

Its core **topics** are:
- Key issue 1: risk, uncertainty, vulnerability;
- Key issue 2: sustainable living;
- Key issue 3: integrated welfare;
- Key issue 4: environmental balance;
- Key issue 5: adaptable space;
- Key issue 6: global responsibility;
- Key issue 7: sustainability mediation

Duration: The provision programme is scheduled for a duration of 6 years, the first phase (2004 to 2006) and second phase (2006 to 2010). At the moment there is no information what will happen with the programme in the future.

Sponsor: Federal Ministry of Science and Research.

Budget: The Budget for 2004-2007 was in total €7,1 Mio.

Selection of projects: research projects are mostly selected by means of tender procedure.

Source: Pro-vision Homepage

Box 2: Key findings on Austrian program on technologies for sustainable development

The programme “Technologies for sustainable development” initiates and supports trend-setting research and development projects concentrated on technological innovations. The program pursues clearly defined emphases, selects projects by means of tendering procedures and is characterized by networking between individual research projects and by accompanying project management. The Ministry invites tenders in three subprograms:

Building of tomorrow:

Focus: The sub-programme “Building of tomorrow” focuses on the residential and office building that
feature improvements as compared to current buildings in Austria, in topics such as energy efficiency, renewable energy sources, renewable, raw materials, service and user-related aspects and settlement structures.

Duration: It has been scheduled for a duration of 5 to 8 years (until 2008). From 2008, the programme will be extended until 2011.

Factory of tomorrow:
Focus: The sub-programme „Factory of Tomorrow“addresses the trade and industry as well as service enterprises that produce and provide products of tomorrow using materials of tomorrow to meet tomorrow’s needs.

Goal: The goal is to encourage the development and implementation of trend-setting technology in enterprises. Topics treated are: production processes, renewable raw materials, and new concepts for the products.

Duration: It is scheduled for duration of 9 years (2000-2009). Currently, there are no tenders open as the programme is in a redesign phase. The Programme will be then further developed to a new programme named “Smart production”.

Budget: From 2001-2008 there have been 5 tenders with a budget of € 23 Mio.

Energy systems of tomorrow:
Focus: The programme “Energy system of tomorrow” refers to service oriented reliable and cost–efficient technologies using different predominantly renewable sources of energy. The topics are energy efficiency, the use of renewable energy sources, systems innovations and strategies.

Goal: The goal is the development of technologies and concepts for efficient energy systems that rely on use of renewable energy systems, by taking in consideration regional peculiarities.

Duration: It is scheduled for duration of 9 years (2003- 2007). Since 2007 the programme was leaded over to the new **New Energy 2020.**

Budget: So far there have been two tenders open. The Budget for New Energy 2020 will be € 35 Mio per year. No information is available on how much money was flowing in the first two tenders in the period 2003-2007.

Source: [Homepage of Austrian Programme “Technologies for sustainable development”](#)

Box 3: PFEIL 10: Programme for Research and Development in the Federal Ministry for Agriculture, Forestry, Environment and Water Management.

Focus: plans to conduct research in state owned institution and as well commissioning research in its four strategy areas: rural areas, farming and food, water, environment and waste management.
Objective: to build and focus research activities of the ministry through interdisciplinary cooperation, to utilize efficiently research results in order to secure quality of life.

Duration: PFEIL 10 is the successor of PFEIL 05. The programme is renewed every five years. PFEIL 15 is also already being planned.

Sponsor: The Federal Ministry for Agriculture, Forestry, Environment and Water Management

Budget: The budget for PFEIL 10 (2006-2010) is € 94, 8 Mio.

Selection of projects: Possible procedures include top-down as bottom-up approaches, calls for tenders, search for interested actors in the strategic topics search for stand-alone projects, which are used depending on the respective objectives.

Source: Federal Ministry for Agriculture, Forestry, Environment and Water Management, 2005

All three framework programmes Pro-Vision, the Austrian Programme on technologies for sustainable development and PFEIL 10, are to be adjusted to the target system of the FORNE framework strategy for “Research on Sustainable Development”.

In the Austrian research framework for sustainable development, all three sub-programmes include key topics relevant to sustainable development. They are funded from the public sector (national government ministries). While the programme “Technologies for Sustainable Development” is run by the Federal Ministry of Transport, Innovation and Technology, it is primarily aimed at technological innovations; on the other hand Pro Vision-plus investigates the impact of climate change on ecosystems, regional development and quality of life. Ethical dimensions are also taken into consideration, while the programmes use participative methods. PEFIL 10 concentrates the research funding on topics of importance to environmental management, such as biodiversity, resources management, land usage and other sub-domains under its aforementioned strategic fields. As one of the programmes of FORNE, it also concentrates funding for research for sustainable development (indicators, impact assessment, education for sustainable development). The programmes are still running under the framework strategy of FORNE though it is not clear how the FORNE strategy will be further developed and how much it will be considered in the future Austrian research programmes.

4.2 German Framework Programme “Research for Sustainable Development”

In order to meet the EU’s “20-20-20” targets for 2020, Germany has set up an ambitious new framework programme “Research for Sustainable Development” [Forschung für Nachhaltige Entwicklung-FONA] on 2 February 2010. Until the year 2015, the Federal Ministry of Education and Research will be providing funds of over € 2 billion for the development of sustainable innovations (BMBF, 2009: 11).

Within this new framework programme, Germany aims at strengthening its position as an exporting nation and technological leader. Therefore, the activities in this programme particularly concentrate on the advancement of technologies in the area of climate protection, resource efficiency and future-oriented energy supply which are supposed to open up new markets for eco-innovations. Furthermore, through its Framework Programme the Federal Ministry of Education and Research will consistently implement the German national sustainable development strategy (NSDS) in the field of energy efficiency and land usage and the High-Tech Strategy in the field of Climate Energy and Resources.
The specific targets of the new framework programme are:

1) To reach the international agreed targets of tackling climate change, by aiming at a 40% reduction of greenhouse gas emissions until 2020;
2) To establish a sustainable energy supply, by 20% increase of the share of renewable and by doubling the energy productivity compared to the levels of 1990;
3) To conserve natural resources, biodiversity, and raw materials, by doubling the raw material productivity until 2020, and decreasing land usage from 130 to 30 ha per day;
4) To affect societal change in line with the requirements of sustainable development (BMBF, 2009).

The Federal Ministry of Education and Research is responsible for the coordination and management of the framework programme and, by so doing, is supported by an advisory board of external experts. The website of the Framework Programme has been launched and annual conferences organised in order to foster networking activities between stakeholders from politics, science, economy and the society. Figure 12 displays the distribution of different actors who are involved in research projects and networking activities.

4.2.1 Action fields of Research framework programme for sustainable development

The Research Framework Programme includes the following central fields of action:

a) Global responsibility - International networking
b) Earth system and geo-technologies
c) Climate and energy
d) Sustainable economy and resources
e) Social developments

These five fields of action are narrowed down into research focal points (see Table 2 below). These fields will be supplemented with research on cross-cutting issues such as “sustainable land management”, “economy and sustainable development” and “giant equipments and research infrastructure (i.e. earth observing satellites)”. In these cross-cutting fields, perspectives of natural-technological sciences will be combined with perspectives of economic-social sciences, in order to provide a systemic and integrative approach towards the recommended actions and measures.

The highest amount of funding is provided for “sustainable economy and resources” with € 430 Mio in the sub-field of water management and chemical processes. The second highest to “system earth” with € 192 Mio, followed by “global responsibility” with € 162 Mio, “climate and energy” with € 74 Mio and research on “society” with € 47 Mio. Already completed projects from former Framework Programmes in the research focal points of “peace building” (“Social developments”) and “water resources” (“Sustainable economy and resources”) are, for instance, “Humanitarian mine sweeping” and “GLOWA – Global change and water cycle”.

<table>
<thead>
<tr>
<th>Table 2: Research focal points for 2010-2015</th>
<th>Budget for 2010-2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>Global responsibility</td>
<td>3 Mio.</td>
</tr>
<tr>
<td>Dialogue on SD research</td>
<td></td>
</tr>
<tr>
<td>ERA NET Eco-Innovera</td>
<td>4 Mio.</td>
</tr>
<tr>
<td>Knowlegde centers for climate change in Africa</td>
<td>95 Mio.</td>
</tr>
<tr>
<td>International Partnerships for Environment and Climate change technologies</td>
<td>60 Mio.</td>
</tr>
<tr>
<td>System earth</td>
<td>30 Mio.</td>
</tr>
<tr>
<td>Geo-technologies program</td>
<td></td>
</tr>
<tr>
<td>CO2 storage in substrate</td>
<td>67 Mio.</td>
</tr>
<tr>
<td>Key regions for system earth</td>
<td>35 Mio.</td>
</tr>
<tr>
<td>Dynamic earth system -modelling</td>
<td>60 Mio.</td>
</tr>
<tr>
<td>Climate and energy</td>
<td>12 Mio.</td>
</tr>
<tr>
<td>Economics of climate</td>
<td></td>
</tr>
<tr>
<td>Medium-term climate forecasting</td>
<td>20 Mio.</td>
</tr>
<tr>
<td>Climate and Ecological system services</td>
<td>42 Mio.</td>
</tr>
<tr>
<td>Sustainable economy and resources</td>
<td>100 Mio.</td>
</tr>
<tr>
<td>Small and Medium enterprises Innovation</td>
<td></td>
</tr>
<tr>
<td>Chemical processes and material usage of CO2</td>
<td>80 Mio.</td>
</tr>
<tr>
<td>Sustainable water management</td>
<td>200 Mio.</td>
</tr>
<tr>
<td>Innovative system solutions in land management</td>
<td>50 Mio.</td>
</tr>
<tr>
<td>Society</td>
<td>17 Mio.</td>
</tr>
<tr>
<td>Social dimension of climate change and protection</td>
<td>9 Mio.</td>
</tr>
<tr>
<td>Sustainable Consumption</td>
<td>10 Mio.</td>
</tr>
<tr>
<td>Networking of environmental research NGOs</td>
<td>2 Mio.</td>
</tr>
<tr>
<td>Economic sciences for SD</td>
<td>9 Mio.</td>
</tr>
<tr>
<td>Socio-ecological research</td>
<td></td>
</tr>
</tbody>
</table>

Source: BMFB, 2009: 12.

The Framework Programme “Research for Sustainable Development” is realising through public tenders of central fields of action. The best project proposals will be chosen during a competitive
selection procedure. The programme is relatively open-ended and flexible thus allowing engaging in new additional fields of action. Therefore, the framework programme aims to adapt to new scientific, technological or societal developments by changing priorities in the research agenda. Promotional activities include a wide variety of items: provision and facilitation of research infrastructure (e.g. large scale installations), promotion of institutional capacity (financial support for research institutions), promotion of young scientists (working groups guided by young PhDs).

Box 4: Key findings

<table>
<thead>
<tr>
<th>Focus</th>
<th>the promotion of eco-innovations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duration</td>
<td>from 2010 to 2015</td>
</tr>
<tr>
<td>Budget</td>
<td>€ 2 billion</td>
</tr>
<tr>
<td>Sponsor</td>
<td>Federal Ministry of Education and Research</td>
</tr>
<tr>
<td>Topics</td>
<td>specification of central fields of research; narrowed down to so-called focal points:</td>
</tr>
<tr>
<td>Selection of project</td>
<td>project proposals without tender procedures; networking activities: annual conferences and website; variety of promotional activities: funding of institutions and projects.</td>
</tr>
</tbody>
</table>

Generally, with this research programme for sustainable development, Germany has attempted to meet the targets of tackling climate change, energy efficiency, natural resource management and societal change for sustainable development. Moreover, it implicitly contributes to the implementation of the NSDS targets for energy efficiency, land management, sustainable production and other key objectives. The Research Framework Programme has distributed research funding between environmental, economic, societal and global aspects of sustainable development, by strengthening research specifically in the field of economy and sustainable development.

To conclude, both countries have been active in defining national research programmes for sustainable development and adapting the research framework to the target system of the national strategies for sustainable development by providing a scientific base for the NSDS. These programmes include key topics relevant to sustainable development and are funded by the public sector. Both countries have also arranged the necessary institutional settings and collaboration processes for an effective coordination of research priorities for sustainable development between the ministries and between research programmes and national strategies for sustainable development. However, a detailed prescription of the linkages of research programs for sustainable development and the national strategies goes beyond the scope of this report and might be dealt with in forthcoming works.

References

European Commission (2008), *Scientific evidence for policy-making*. DG Research, Socio-Economic Sciences and Humanities, EUR 22982 EN.

